skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ihara, Hideshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Per/polysulfide species that are generated from endogenously produced hydrogen sulfide have critical regulatory roles in a wide range of cellular processes. However, the lack of delivery systems that enable controlled and sustained release of these unstable species in biological systems hinders the advancement of sulfide biology research, as well as the translation of knowledge to therapeutic applications. Here, a novel approach is developed to generate per/polysulfide species in cells by combining an H2S donor and manganese porphyrin‐containing polymeric micelles (MnPMCs) that catalyze oxidization of H2S to per/polysulfide species. MnPMCs serve as a catalyst for H2S oxidation in aerobic phosphate buffer. HPLC‐MS/MS analysis reveals that H2S oxidation by MnPMCs in the presence of glutathione results in the formation of glutathione‐SnH (n= 2 and 3). Furthermore, co‐treatment of human umbilical vein endothelial cells with the H2S donor anethole dithiolethione and MnPMCs increases intracellular per/polysulfide levels and induces a proangiogenic response. Co‐delivery of MnPMCs and an H2S donor is a promising approach for controlled delivery of polysulfides for therapeutic applications. 
    more » « less